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Abstract— In this paper, the effect of Hall on the flow of Williamson fluid through a 

porous medium in a planar channel under the assumption of long wavelength is investigated. 

A Closed form solutions are obtained for axial velocity and pressure gradient. The effects of 

various emerging parameters on the pressure gradient, time averaged volume flow rate and 

frictional force are discussed with the aid of graphs. 
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I.INTRODUCTION 
 

The study of peristalsis has received significant consideration in the last few decades 

primarily because of its significance of Engineering and Biological organisms. More than a 

few studies have been investigated both theoretical and experimental aspects of the peristaltic 

flow of Newtonian and non-Newtonian fluids in different situations. In the context of such 

physiological and industrial applications, the dynamics of peristaltic mechanism has been 

discussed in detail by various researchers. The non-Newtonian peristaltic flow using a 

constitutive equation for a second order fluid has been investigated by Siddiqui et al. (1991) 

for a planar channel and by Siddiqui and Schwarz (1994) for an axisymmetric tube. They 

have performed a perturbation analysis with a wave number, including curvature and inertia 

effects and have determined range of validity of their perturbation solutions. The effects of 

third order fluid on peristaltic transport in a planar channel were studied by Siddiqui et al. 

(1993) and the corresponding axisymmetric tube results were obtained by Hayat et al. (2002). 

Haroun (2007) studied peristaltic transport of third order fluid in an asymmetric channel. 

Subba Reddy et al. (2007) studied the peristaltic flow of a power-law fluid in an asymmetric 

channel. Peristaltic motion of a Williamson fluid in an asymmetric channel was studied by 

Nadeem and Akram (2009). Magnetohydrodynamic peristaltic flow of a hyperbolic tangent 

fluid in a vertical asymmetric channel with heat transfer was studied by Nadeem and Akram 

(2011). Prasanth Reddy and Subba Reddy (2012) have analyzed the peristaltic pumping of 

third grade fluid in an asymmetric channel under the effect of magnetic fluid. Effect of hall 

and ion slip on peristaltic blood flow of Eyring Powell fluid in a non-uniform porous channel 

was studied by Bhatti et al. (2016). Subba Narasimhudu and Subba Reddy (2017) have 

studied the Hall effects on the peristaltic flow of a Hyperbolic tangent fluid in a channel. 

Shalini and Rajasekhar (2019) have investigated the effect of hall on peristaltic flow of a 

Newtonian fluid through a porous medium in a two-dimensional channel. 
 

 Moreover, flow through a porous medium has been studied by a number of researchers 

employing Darcy’s law Scheidegger (1974). Some studies about this point have been given 

by Varshney (1979) and Raptis and Perdikis (1983). The first study of peristaltic flow 
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through a porous medium is presented by Elsehawey et al. (1999). Elsehawey et al. (2000) 

investigated the peristaltic motion of a generalized Newtonian fluid through a porous 

medium. Hayat et al. (2007) have first investigated the Hall effects on the peristaltic flow of a 

Maxwell fluid trough a porous medium in channel. Peristaltic motion of a carreau fluid 

through a porous medium in a channel under the effect of a magnetic field was studied by 

Sudhakar Reddy et al. (2009). Subba Reddy and Prasnath Reddy (2010) have investigated the 

effect of variable viscosity on peristaltic flow of a Jeffrey fluid through a porous medium in a 

planar channel. The peristaltic pumping of Williamson fluid through a porous medium in a 

horizontal channel with heat transfer was studied by Vasu et al. (2010). Eldabe (2015) have 

studied the Hall Effect on peristaltic flow of third order fluid in a porous medium with heat 

and mass transfer. Hall effects on the peristaltic transport of Williamson fluid through a 

porous medium with heat and mass transfer was discussed by Eldabe et al. (2016). Ranjitha 

and Subba Reddy (2018) have analyzed the radiation effects on the peristaltic flow of a 

Williamson fluid through a porous medium in a planar channel. 

Motivated by these, the effect of Hall on the peristaltic pumping of a Williamson fluid 

in a planar channel under the assumption of long wavelength is investigated. The expressions 

for the velocity and axial pressure gradient are obtained by employing perturbation technique. 

The effects of Weissenberg number, Darcy number, Hall parameter, Hartmann number and 

amplitude ratio on the axial pressure gradient, time-averaged volume flow rate are analyzed 

with the help of graphs. 

II.MATHEMATICAL FORMULATION 

We consider the peristaltic motion of a Williamson fluid through a porous medium in a two-

dimensional channel of width 2a under the effect of magnetic field. The flow is generated by 

sinusoidal wave trains propagating with constant speed along the channel walls. A uniform 

magnetic field is applied in the transverse direction to the flow. The magnetic Reynolds 

number is considered small and so induces magnetic field neglected. Fig. 1 represents the 

physical model of the channel. The wall deformation is given  

2
( , ) cos ( )Y H X t a b X ct




                       (2.1) 

where b is the amplitude of the wave,   the wave length and X and Y - the rectangular 

coordinates with X measured along the axis of the channel and Y perpendicular to X . Let 

(U,V) be the velocity components in fixed frame of reference (X,Y) . 
 

The flow is unsteady in the laboratory frame (X,Y) . However, in a co-ordinate system 

moving with the propagation velocity c (wave frame (x, y)), the boundary shape is stationary. 

The transformation from fixed frame to wave frame is given by 
 

-  ,  ,  - ,  x X c t y Y u U c v V                (2.2) 

The International journal of analytical and experimental modal analysis

Volume XIII, Issue III, March/2021

ISSN NO:0886-9367

Page No: 1437



 

Fig. 1. The physical model 

The constitutive equation for a Williamson fluid (given in Vasu et al., 2010) is 

1

0( )(1 )     
 



 

 
      

           (2.3) 

Where  is the extra stress tensor,  is the infinite shear rate,   viscosity is the zero shear 

rate,   is the time constant and 
  is defined as 

1 1

2 2
ij ji

i j

   
  

           (2.4) 

where is the second invariant stress tensor. We consider in the constitutive Equation (2.3) the 

case for which  =0  and 1


   so we can write. 

0 (1 )   
 

            (2.5) 

The above model reduces to Newtonian for 0   

The equations governing the flow in the wave frame of reference are 

0
u v

x y

 
 

 
          (2.6) 

    
2

0 0

21

yxxx Bu u p
u v mv u c u c

x y x x y km

  


   
          

      
         (2.7) 

  
2

0 0

21

xy yy Bv v p
u v m u c v v

x y y x y km

   


    
         

      
          (2.8) 

where  is the density, k is the permeability of the porous medium,   is the electrical 

conductivity, 0B  is the magnetic field strength and is the Hall parameter. 

The corresponding dimensional boundary conditions are 

u c  at y H (no slip condition)                (2.9) 

0
u

y





at 0y  (symmetry condition)             (2.10) 
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Introducing the non-dimensional variables defined by 
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into the Equations (2.6) - (2.8), reduce to (after dropping the bars) 

0
u v

x y

 
 

 
                                     (2.12) 

    

2

2

2

Re

1
1 1

1

xyxxu u p
u v

x y x x y

M
m v u u

Dam
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 


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   
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                 (2.13) 
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               (2.14) 

Where 
2

k
Da

a
  is the Darcy number  

2 1xx

u
We

x
 

  
     
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 and 

0

0

M aB



  is the Hartmann number. 

Under lubrication approach,  neglecting the terms of order  and Re the Eqs. (2.13) and 

(2.14) become  

 
2

2

1
1 1

1

p u u M
We u

x y y y Dam

        
        

         
               (2.15) 

0
p

y





                            (2.16) 

From Eq. (2.15) and (2.16), we get  

 
22 2

2 2

1
1

1

dp u u M
We u

dx y y Day m

      
        

       

               (2.17) 

The corresponding non-dimensional boundary conditions in the wave frame are given by 

1u    at 1 cos2y h x                  (2.18) 
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0
u

y





 at 0y                    (2.19) 

The volume flow rate q in a wave frame of reference is given by  

0

h

q udy                     (2.20) 

The instantaneous flow  ,Q X t in the laboratory frame is 

   
0 0

, 1

h h

Q X t UdY u dy q h                         (2.21) 

The time averaged volume flow rate Q over one period T
c

 
 
 

of the peristaltic wave is given 

by 

0

1
1

T

Q Qdt q
T

                     (2.22) 

III. Solution 

Since Eq. (2.17) is a non-linear differential equation, it is not possible to obtain closed form 

solution. Therefore we employ regular perturbation to find the solution. For perturbation 

solution, we expand u , 
dp

dx
and q as follows 

 2

0 1u u Weu o We                  (3.1) 

 20 1
dp dpdp

We o We
dx dx dx

                 (3.2) 

 2

0 1q q Weq o We                      (3.3) 

Substituting these equations into the Eqs. (2.17) - (2.19), we obtain 

3.1 System of order zero 0We  

 
2 2

0 0

02 2

1
1

1

dp u M
u

dx Day m

 
    
  

           (3.4) 

and the respective boundary conditions are 

0 1u   at y h               (3.5) 

0 0
u

y





at 0y                (3.6) 

3.2 System of order 1we  
22 2
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12 2

1

1

udp u M
u

dx y y Day m

     
       

       

          (3.7) 

and the respective boundary conditions are  

1 0u  at y h               (3.8) 

1 0
u

y





at 0y                 (3.9) 

3.3 Solution for system of order 0We  

 Solving Eq. (3.4) using the boundary conditions (3.5) and (3.6), we obtain 

0

0 2

1 cosh
1 1

cosh

dp Ny
u

dx NhN

 
   

                (3.10) 
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Where 
2

2

1

1

M
N

Dam

 
  

   

The volume flow rate 
0q is given by 0

0 3

1 sinh cosh

cosh

dp Nh Nh Nh
q h

dx NhN

 
  

 
          (3.11) 

From Eq. (3.11), we have 

 3

00

tanh

N q hdp

dx Nh Nh




               (3.12) 

3.4 Solution of order 1We  

Substituting Eq. (3.10) in the Eq. (3.7) and solving the Eq. (3.7), using the boundary 

conditions (3.8) and (3.9), we obtain 

 

2

01

1 2 3 2

1

1 cosh 1
1

cosh 3 cosh

2sinh sinh 2 cosh

dpdp Ny
u

dx Nh dxN N Nh

Ny Ny A Ny

  
     

   

 
                                 (3.13) 

Where 1 2tanh (cosh 1)A Nh Nh   

The volume flow rate 1q  is given by 
2

01

1 22 3 2

1 1 1
tanh

3 cosh

dpdp
q Nh h A

dx N dxN N Nh

  
     

            (3.14)
 

Where     2 1

2 1 sinh
cosh 1 cosh 2 1

2

Nh
A Nh Nh A

N N N
      

From Eq. (3.14) and (3.12), we have 

 

 

263
2 01 1

32tanh 3cosh tanh

A N q hdp q N

dx Nh Nh Nh Nh Nh


 

 
           (3.15) 

Substituting Equations (3.12) and (3.15) into the Eq. (3.2) and using the relation  

0 1
dp dpdp

We
dx dx dx

   and neglecting terms greater than ( )o We  we get 

   

 

23 6

2

32tanh 3cosh tanh

q h N A N q hdp
We

dx Nh Nh Nh Nh Nh

 
 

 
           (3.16) 

The dimensionless pressure rise per one wavelength in the wave frame is defined as 
1

0

dp
p dx

dx
                   (3.17) 

Note that, as 0M  our results coincide with the results of Vasu et al. (2010) in the absence 

of heat transfer.  

IV Discussions of the Results 

Fig. 2 shows the variation of the axial pressure gradient 
dp

dx
with We for m=0.2, M=1, 

Da=0.1, 0.5  and 1Q   . It is observed that, the axial pressure gradient 
dp

dx
increases with 

increasing Wiessenberg number We. 
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The variation of the axial pressure gradient 
dp

dx
with Da for We=0.01, M=1, m=0.2, 0.5   

and 1Q   shown in Fig. 3. It is noted that, the axial pressure gradient 
dp

dx
decreases with 

increasing Darcy number Da. 

Fig. 4 depicts the variation of the axial pressure gradient 
dp

dx
with m for We=0.01, M=1, 

Da=0.1, 0.5  and 1Q   . It is noted that, the axial pressure gradient 
dp

dx
decreases with 

increasing Hall parameter m. 

The variation of the axial pressure gradient 
dp

dx
with M for 0.5n   0.2m  , 0.01We  , 0.1  ,

0.1Da  , 0.5  and 1Q   is depicted in Fig. 5. It is observed that, on increasing Hartmann 

number M increases the axial pressure gradient 
dp

dx
 

Fig. 6 shows the variation of the axial pressure gradient 
dp

dx
with  for 0.2m  , 1M  , 0.01We 

, 0.1Da  and 1Q   . It is found that, the axial pressure gradient 
dp

dx
increases with increasing 

amplitude ratio  . 

The variation of the pressure rise p with Q for different values of We with 0.2m  , 1M  , 

0.1Da  , and 0.5  is shown in Fig. 7. It is noted that, the time-averaged volume flow rate Q  

increases with increasing Wiessenberg number We in pumping  0p  , free pumping 

 0p  and copumping  0p  regions. 

Fig. 8 depicts the variation of the p with Q for different values of Da with 0.01We  , 0.2m  , 

1M  and 0.5  is presented in Fig. 11. It is found that, the time-averaged flow rate Q

decreases with increasing Da in the pumping region, while it increases with increasing Da in 

both the free pumping and the co-pumping regions. 

 

The variation of the pressure rise p with Q for different values of m with 0.01We  , 0.1Da  , 

1M  and 0.5  is illustrated in Fig. 9. It is observed that, the time-averaged flow rate Q

decreases with increasing m in the pumping region, while it increases with increasing m in 

both the free pumping and co-pumping regions. 

 

Fig. 10 depicts the variation of the pressure rise p with Q for different values of M with 

0.2m  , 0.1Da  , 0.01We  , and 0.5  .It is observed that, the time-averaged flow rate Q

increases with increasing M in the pumping region, while it decreases with increasing M in 

both the free-pumping and co-pumping regions. 

 

The variation of the pressure rise p with Q for different values of  with 0.2m  , 0.1Da  , 

1M  , 0.01We  is depicted in Fig. 11. It is found that, the time-averaged flow rate Q increases 

with increasing  in both the pumping and free pumping regions, while it decreases with 

increasing  in the co-pumping region for chosen  0p 
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V Conclusions 

In this chapter, we studied the effects of Hall on the peristaltic flow of a Williamson fluid 

through a porous medium in a planar channel under the assumption of long wavelength. The 

expressions for the velocity and axial pressure gradient are obtained by employing 

perturbation technique. It is found that, the axial pressure gradient and time-averaged flow 

rate in the pumping region increases with increasing the Weissenberg number We , the 

Hartmann number M and the amplitude ratio  , while they decreases with increasing Darcy 

number Da and Hall parameter m . 

 

Fig. 2 The variation of the axial pressure gradient 
dp

dx
with We for 0.2m  , 1M  , 0.1Da  , 

0.5   and 1Q   . 

 

Fig. 3 The variation of the axial pressure gradient 
dp

dx
with Da for 1M  , 0.01We  , 0.5   and 

1Q   . 
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Fig 4 The variation of the axial pressure gradient 
dp

dx
with m  for 0.01We  , 1M  , 0.1Da  , 

0.5   and 1Q   . 

 

Fig 5 The variation of the axial pressure gradient 
dp

dx
with M for 0.2m  , 0.01We  , 0.1Da  , 

0.5   and 1Q   . 
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Fig 6 The variation of the axial pressure gradient 
dp

dx
with  for 0.2m  , 1M  , 0.1Da  , 

0.01We  and 1Q   . 

 

Fig 7 The variation of the pressure rise p with Q  for different values of We with 0.2m  , 

0.1Da  , 1M   and 0.5  . 
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Fig 8 The variation of the pressure rise p with Q for different values of Da with 0.2m  , 

0.01We  , 1M   and 0.5  . 

 

Fig 9 The variation of the pressure rise p with Q  for different values of m  with 0.01We  , 

0.1Da  , 1M  , and 0.5  . 
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Fig 9(i) Enlargement of fig 9 

 

Fig 10 The variation of the pressure rise p with Q for different values of M with 0.2m  , 

0.1Da  , 0.01We   and 0.5  . 
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Fig 11 The variation of the pressure rise p with Q for different values of   with 0.2m  , 

0.1Da  , 1M  , and 0.01We  .  
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