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Abstract— In this paper, the effect of Hall on the flow of Williamson fluid through a
porous medium in a planar channel under the assumption of long wavelength is investigated.
A Closed form solutions are obtained for axial velocity and pressure gradient. The effects of
various emerging parameters on the pressure gradient, time averaged volume flow rate and
frictional force are discussed with the aid of graphs.
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I.INTRODUCTION

The study of peristalsis has received significant consideration in the last few decades
primarily because of its significance of Engineering and Biological organisms. More than a
few studies have been investigated both theoretical and experimental aspects of the peristaltic
flow of Newtonian and non-Newtonian fluids in different situations. In the context of such
physiological and industrial applications, the dynamics of peristaltic mechanism has been
discussed in detail by various researchers. The non-Newtonian peristaltic flow using a
constitutive equation for a second order fluid has been investigated by Siddiqui et al. (1991)
for a planar channel and by Siddiqui and Schwarz (1994) for an axisymmetric tube. They
have performed a perturbation analysis with a wave number, including curvature and inertia
effects and have determined range of validity of their perturbation solutions. The effects of
third order fluid on peristaltic transport in a planar channel were studied by Siddiqui et al.
(1993) and the corresponding axisymmetric tube results were obtained by Hayat et al. (2002).
Haroun (2007) studied peristaltic transport of third order fluid in an asymmetric channel.
Subba Reddy et al. (2007) studied the peristaltic flow of a power-law fluid in an asymmetric
channel. Peristaltic motion of a Williamson fluid in an asymmetric channel was studied by
Nadeem and Akram (2009). Magnetohydrodynamic peristaltic flow of a hyperbolic tangent
fluid in a vertical asymmetric channel with heat transfer was studied by Nadeem and Akram
(2011). Prasanth Reddy and Subba Reddy (2012) have analyzed the peristaltic pumping of
third grade fluid in an asymmetric channel under the effect of magnetic fluid. Effect of hall
and ion slip on peristaltic blood flow of Eyring Powell fluid in a non-uniform porous channel
was studied by Bhatti et al. (2016). Subba Narasimhudu and Subba Reddy (2017) have
studied the Hall effects on the peristaltic flow of a Hyperbolic tangent fluid in a channel.
Shalini and Rajasekhar (2019) have investigated the effect of hall on peristaltic flow of a
Newtonian fluid through a porous medium in a two-dimensional channel.

Moreover, flow through a porous medium has been studied by a number of researchers

employing Darcy’s law Scheidegger (1974). Some studies about this point have been given
by Varshney (1979) and Raptis and Perdikis (1983). The first study of peristaltic flow
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through a porous medium is presented by Elsehawey et al. (1999). Elsehawey et al. (2000)
investigated the peristaltic motion of a generalized Newtonian fluid through a porous
medium. Hayat et al. (2007) have first investigated the Hall effects on the peristaltic flow of a
Maxwell fluid trough a porous medium in channel. Peristaltic motion of a carreau fluid
through a porous medium in a channel under the effect of a magnetic field was studied by
Sudhakar Reddy et al. (2009). Subba Reddy and Prasnath Reddy (2010) have investigated the
effect of variable viscosity on peristaltic flow of a Jeffrey fluid through a porous medium in a
planar channel. The peristaltic pumping of Williamson fluid through a porous medium in a
horizontal channel with heat transfer was studied by Vasu et al. (2010). Eldabe (2015) have
studied the Hall Effect on peristaltic flow of third order fluid in a porous medium with heat
and mass transfer. Hall effects on the peristaltic transport of Williamson fluid through a
porous medium with heat and mass transfer was discussed by Eldabe et al. (2016). Ranjitha
and Subba Reddy (2018) have analyzed the radiation effects on the peristaltic flow of a
Williamson fluid through a porous medium in a planar channel.

Motivated by these, the effect of Hall on the peristaltic pumping of a Williamson fluid
in a planar channel under the assumption of long wavelength is investigated. The expressions
for the velocity and axial pressure gradient are obtained by employing perturbation technique.
The effects of Weissenberg number, Darcy number, Hall parameter, Hartmann number and
amplitude ratio on the axial pressure gradient, time-averaged volume flow rate are analyzed
with the help of graphs.

ILMATHEMATICAL FORMULATION

We consider the peristaltic motion of a Williamson fluid through a porous medium in a two-
dimensional channel of width 2a under the effect of magnetic field. The flow is generated by
sinusoidal wave trains propagating with constant speed along the channel walls. A uniform
magnetic field =, is applied in the transverse direction to the flow. The magnetic Reynolds
number is considered small and so induces magnetic field neglected. Fig. 1 represents the
physical model of the channel. The wall deformation is given

Y =iH(X,t)=iaib00527”(X—ct) (2.)

where b is the amplitude of the wave, A the wave length and X and Y - the rectangular
coordinates with X measured along the axis of the channel and Y perpendicular to X . Let
(U,V) be the velocity components in fixed frame of reference (X,Y) .

The flow is unsteady in the laboratory frame (X,Y) . However, in a co-ordinate system
moving with the propagation velocity ¢ (wave frame (X, y)), the boundary shape is stationary.
The transformation from fixed frame to wave frame is given by

x=X-ct,y=Y,u=U-c,v=V (2.2)
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Fig. 1. The physical model

The constitutive equation for a Williamson fluid (given in Vasu et al., 2010) is

e=|n.+mrn ey

X
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(2.3)

Where < is the extra stress tensor, z_ is the infinite shear rate, . viscosity is the zero shear

rate, T is the time constant and ; is defined as

SR

(24)

where is the second invariant stress tensor. We consider in the constitutive Equation (2.3) the

case for which ,=0 and r} <1 SO We can write.

r=—n,1+T7y)y
The above model reduces to Newtonian for =0
The equations governing the flow in the wave frame of reference are

a N _g
ox oy

ou  ou op or, Ot oB? n
,o[ua +V5J__6x_ Fo 6);X+1+n‘;2(mv—(u+c))— % (u+c)

(m(u +c)+v)—%v

(2.5)

(2.6)

(2.7)

(2.8)

where pis the density, k is the permeability of the porous medium, o is the electrical

conductivity, B, is the magnetic field strength and is the Hall parameter.

The corresponding dimensional boundary conditions are
u=-cat y=H (no slip condition)

%” =0at y=0(symmetry condition)

Volume XII1, Issue 111, March/2021

(2.9)
(2.10)

Page No: 1438



The International journal of analytical and experimental modal analysis ISSN NO:0886-9367

Introducing the non-dimensional variables defined by

%=X §oY gt goy s o
B U SR C7CA]
b H - c - - a
=_1h=_1t:_’ X = y by — 7/ — '
¢ a a 2t X Fur B0 %CTW
Ty lrW,Re:paC,We=E, =7—a,
7,C o a ¢
a=9 211
q=— (2.11)
into the Equations (2.6) - (2.8), reduce to (after dropping the bars)
M N _g (2.12)
ox oy
Res ua—u+vau —@—52%—67—XV+
OX OX OX oy (2 13)
m® (mév—(u+1))—i(u+1)
1+m? Da
Re§3(u@+v@j— P -2 0y 597
ox oy oy 0)’ oy (2.14)
2 2
%(m(uﬂﬁdv)—g—av

Where Da= % is the Darcy number

-2 [1+We 7} au
OX

= —[1+We;./}(%u+52 %j

- —25[1+We }}@
oy

1
2 277
[252(6“] (6—“+52@j +252(@” and
OX oy OX oy
M :aBO\/E is the Hartmann number.
o

Under lubrication approach, neglecting the terms of order sand Re the Egs. (2.13) and
(2.14) become

®_9 {1 wﬂ}a—“}_('\"— : j(u+1) (2.15)
ox oy oy |oy| \1+m?* Da

op

—=0 2.16
Y (2.16)
From Eqg. (2.15) and (2.16), we get

&@Weﬁ{(@_u] ]_[M_;i](w (247)
dx oy oy|\ oy 1+m° Da

The corresponding non-dimensional boundary conditions in the wave frame are given by
u=-1at y=h=1+dcos2xzx (2.18)
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ou

5:0 at y=0 (2.19)

The volume flow rate g in a wave frame of reference is given by

q= _Tudy (2.20)

Theoinstantaneous flow Q(X,t)in the laboratory frame is

Q(X,t)z}UdY:Jq(u+l)dy=q+h (2.21)
o 0

The time averaged volume flow rate Q over one period T (: %) of the peristaltic wave is given

by

6:%ith=q+1 (2.22)

I11. Solution

Since Eq. (2.17) is a non-linear differential equation, it is not possible to obtain closed form
solution. Therefore we employ regular perturbation to find the solution. For perturbation

solution, we expand u, j—p and q as follows
X

U =, +Weu, +o(We?) (3.1)
%=%+We%+o(Wez) (3.2)
dx dx dx

q = d, +Weg, +0(We”) (3.3)

Substituting these equations into the Egs. (2.17) - (2.19), we obtain

3.1 System of order zero we°

dp, %, [ M2 1
dx  oy? (1+ m ' Da (b +1) (3.4)
and the respective boundary conditions are
u,=-1at y=nh (3.5)
ou,
—%-0at y=0 3.6
Y y (3.6)
3.2 System of order we'
2 2 2
ap Y O\ ) | [ ML, (3.7)
dx  oy? oy 1+m*> Da
and the respective boundary conditions are
u =0at y=h (3.8)
%:Oat y=0 (3.9)
oy

3.3 Solution for system of order we’
Solving Eq. (3.4) using the boundary conditions (3.5) and (3.6), we obtain
_ 1 dn, {M_l}_l

b= N? dx | cosh Nh (3.10)
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Where

2
o[ ML
1+m° Da

. 1 dp, | sinh Nh— Nhcosh Nh
The volume flow r n =——2 - A1
e volume flow rate q,is given by g, NE dx[ o Nh } h (3.11)
From Eq. (3.11), we have
dp, _ N°(q, +h)
dx  tanh Nn—Nh (3.12)

3.4 Solution of order we'

Substituting Eqg. (3.10) in the Eqg. (3.7) and solving the Eq. (3.7), using the boundary
conditions (3.8) and (3.9), we obtain

_im[coshNy_l}r 1 [dﬁjz

u, = 2 3 2
N° dx | cosh Nh 3N*cosh® Nh\ dx
(2sinh Ny —sinh 2Ny + A cosh Ny) (3.13)
Where A = 2tanh Nh(cosh Nh-1)
The volume flow rate g, is given by

2
ql=i2%(itanh Nh—h\J'f'?’;2 % AZ
N° dx \ N 3N~ cosh” Nh\ dx (3 14)

sinh Nh

2 1
Where A, :W(cosh Nh—l)—m(cosh 2Nh-1)+A

From Eqg. (3.14) and (3.12), we have

do_ GN° AN(g+hy (3.15)
dx tanhNh—Nh  3cosh? Nh(tanh Nh—Nh)’

Substituting Equations (3.12) and (3.15) into the Eqg. (3.2) and using the relation

%:E—E—We% and neglecting terms greater than o(We) we get

h)N® N®(q+h)’
d_ (AN ) ANT(a+h) (3.16)
dx tanh Nh—Nh 3cosh? Nh(tanh Nh—Nh)
The dimensionless pressure rise per one wavelength in the wave frame is defined as

1

ap = [ P (3.17)

5 dx

Note that, as M — oour results coincide with the results of Vasu et al. (2010) in the absence
of heat transfer.

IV Discussions of the Results

dp with We for m=0.2, M=1,

Fig. 2 shows the variation of the axial pressure gradient ™

Da=0.1, ¢=05and Q=-1. It is observed that, the axial pressure gradient j—s increases with

increasing Wiessenberg number We.
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The variation of the axial pressure gradlent Wlth Da for We=0.01, M=1, m=0.2, 4=0.5

and Q=-1shown in Fig. 3. It is noted that, the axial pressure gradlent decreases with

increasing Darcy number Da.
Fig. 4 depicts the variation of the axial pressure gradlent ™ B with m for We=0.01, M=1,

Da=0.1, g=05and Q=-1. It is noted that, the axial pressure gradient d—sdecreases with

increasing Hall parameter m.
The variation of the axial pressure gradlent W|th M for n=05 m=0.2,We=001, f=0.1,

Da=0.1, ¢=05and Q=-1is depicted in Fig. 5. It is observed that, on increasing Hartmann

number M increases the axial pressure gradient d—p
Fig. 6 shows the variation of the axial pressure gradlent W|th gfor m=02, M =1,We=0.01

, Da=0.1and Q=-1. It is found that, the axial pressure gradlent mcreases with increasing

amplitude ratio ¢.

The variation of the pressure rise Apwith Q for different values of wewith m=0.2, M =1,
Da=0.1, and ¢=0.5is shown in Fig. 7. It is noted that, the time-averaged volume flow rate Q
increases with increasing Wiessenberg number Wwein pumping (Ap>0), free pumping
(Ap=0)and copumping (Ap < 0)regions.

Fig. 8 depicts the variation of the Apwith Q for different values of Dawith we=0.01, m=0.2,
M=1and ¢=05is presented in Fig. 11. It is found that, the time-averaged flow rate Q

decreases with increasing Da in the pumping region, while it increases with increasing Dain
both the free pumping and the co-pumping regions.

The variation of the pressure rise Apwith Q for different values of mwith we=0.01, Da=0.1,
M=1and ¢=05is illustrated in Fig. 9. It is observed that, the time-averaged flow rate Q

decreases with increasing min the pumping region, while it increases with increasing min
both the free pumping and co-pumping regions.

Fig. 10 depicts the variation of the pressure rise Apwith Q for different values of M with

m=0.2,Da=0.1, We=001, and ¢=05.It is observed that, the time-averaged flow rate Q

increases with increasing M in the pumping region, while it decreases with increasing M in
both the free-pumping and co-pumping regions.

The variation of the pressure rise Apwith Q for different values of gwith m=0.2, Da=0.1,
M =1, We =0.01is depicted in Fig. 11. It is found that, the time-averaged flow rate Q increases
with increasing ¢in both the pumping and free pumping regions, while it decreases with
increasing ¢ in the co-pumping region for chosen Ap(<0)
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V Conclusions

In this chapter, we studied the effects of Hall on the peristaltic flow of a Williamson fluid
through a porous medium in a planar channel under the assumption of long wavelength. The
expressions for the wvelocity and axial pressure gradient are obtained by employing
perturbation technique. It is found that, the axial pressure gradient and time-averaged flow
rate in the pumping region increases with increasing the Weissenberg number we, the
Hartmann number M and the amplitude ratio ¢, while they decreases with increasing Darcy

number Daand Hall parameter m.

a0

¢ 1Y
8o Lo\

Fig. 2 The variation of the axial pressure gradient j—zwith We for m=02, M =1, Da=0.1,

¢=05and Q=-1.
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Fig. 3 The variation of the axial pressure gradient 3—2 with Dafor M =1, We=0.01, ¢=0.5 and

Q=-1.
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Fig 4 The variation of the axial pressure gradient j—swith m for We=0.01, M =1, Da=0.1,

$=05 and Q=-1.
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Fig 5 The variation of the axial pressure gradient j—swith M for m=0.2, We=0.01, Da=0.1,

¢=05and Q=-1.
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Fig 6 The variation of the axial pressure gradient j—swith gfor m=02, M=1, Da=0.1,

We=0.01and Q=-1.
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Fig 7 The variation of the pressure rise Apwith Q for different values of wewith m=0.2,
Da=0.1, M=1and ¢=05.
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Fig 8 The variation of the pressure rise Apwith Q for different values of Dawith m=0.2,
We=0.01, M=1 and ¢=05.
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Fig 9 The variation of the pressure rise Apwith Q for different values of m with we=0.01,
Da=0.1, M=1,and ¢=05.
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Fig 10 The variation of the pressure rise Apwith Q for different values of M with m=0.2,
Da=0.1, We=0.01 and ¢=0.5.
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Fig 11 The variation of the pressure rise Apwith Q for different values of 4 with m=0.2,
Da=0.1, M =1, and We=0.01.
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